Hive基础
Hive是由Google实现并且开源的一个基于Hadoop的一个数据仓库工具,其可以将结构化的数据映射为一张数据库表,并且提供HQL(Hive SQL)查询功能。其底层数据存储在HDFS上,HDFS(Hadoop Distributed File System)是GFS(Google File System)的实现,是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础。Hive具有目前Hadoop上最丰富最全的SQL语法,也拥有最稳定的执行(但同时也最慢)。是目前Hadoop上几乎标准的ETL和数据仓库工具。
Hive的本质是将SQL语句转换为MapReduce任务运行,使得不熟悉mapReduce的用户很方便的利用HQL处理和计算HDFS上的结构化的数据,适用于离线的批量数据计算。实质就是一款基于HDFS的MapReduce计算框架,对于存储在HDFS中的数据进行分析和管理。
数据仓库之父比尔·恩门(Bill Inmon)在 1991 年出版的“Building the Data Warehouse”(《建 立数据仓库》)一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面 向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史 变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
Hive特点
- 优点:
- 可扩展性,横向扩展,Hive 可以自由的扩展集群的规模,一般情况下不需要重启服务 横向扩展:通过分担压力的方式扩展集群的规模 纵向扩展:一台服务器cpu i7-6700k 4核心8线程,8核心16线程,内存64G => 128G
- 延展性,Hive 支持自定义函数,用户可以根据自己的需求来实现自己的函数
- 良好的容错性,可以保障即使有节点出现问题,SQL 语句仍可完成执行
- 缺点:
- Hive 的查询延时很严重,因为 MapReduce Job 的启动过程消耗很长时间,所以不能 用在交互查询系统中。
- Hive 不支持事务(因为不没有增删改,所以主要用来做 OLAP(联机分析处理),而 不是 OLTP(联机事务处理),这就是数据处理的两大类别)。
Hive和RDBMS的对比
item | Hive | RDBMS |
---|---|---|
查询语言 | HQL | SQL |
数据存储 | HDFS | Raw Device or Local FS |
执行器 | MapReduce | Executor |
数据插入 | 支持批量导入/单条插入 | 支持批量导入/单条插入 |
数据操作 | 覆盖追加 | 行级更新删除 |
处理数据规模 | 大 | 小 |
执行延迟 | 高 | 低 |
分区 | 支持 | 支持 |
索引 | 0.8版本之后加入简单索引 | 支持复杂索引 |
扩展性 | 高 | 有限 |
数据加载模式 | 读时模式 | 写时模式 |
应用场景 | 海量数据查询 | 实时查询 |
Hive架构
从图中可以看出Hive的内部架构由四部分组成:
用户接口:shell/CLI,jdbc/odbc, webui Command Line Interface
CLI,Shell 终端命令行(Command Line Interface),采用交互形式使用 Hive 命令行与 Hive 进行交互,最常用(学习,调试,生产)
JDBC/ODBC,是 Hive 的基于 JDBC 操作提供的客户端,用户(开发员,运维人员)通过 这连接至 Hive server 服务
Web UI,通过浏览器访问 Hive
跨语言服务:thrift server 提供了一种能力,让用户可以使用多种不同的语言来操纵Hive
Thrift是Facebook开发的一个软件框架,可以用来进行可扩展且跨语言的服务的开发,Hive继承了该服务,能让不同的编程语言调用Hive的接口。
底层Driver:驱动器Driver,编译器Compiler,优化器Optimizer,执行器Executor
Driver 组件完成 HQL 查询语句从词法分析,语法分析,编译,优化,以及生成逻辑执行 计划的生成。生成的逻辑执行计划存储在 HDFS 中,并随后由 MapReduce 调用执行。
Hive的核心是驱动引擎,其由四部分组成:
- 解释器:解释器的作用是将 HiveSQL 语句转换为抽象语法树(AST)
- 编译器:编译器是将语法树编译为逻辑执行计划
- 优化器:优化器是对逻辑执行计划进行优化
- 执行器:执行器是调用底层的运行框架执行逻辑执行计划
元数据存储系统:RDMBS MySQL
元数据,通俗的讲,就是存储在 Hive 中的数据的描述信息。
Hive 中的元数据通常包括:表的名字,表的列和分区及其属性,表的属性(内部表和 外部表),表的数据所在目录。Metastore 默认存在自带的 Derby 数据库中。缺点就是不适合多用户操作,并且数据存 储目录不固定。数据库跟着 Hive 走,极度不方便管理。
解决方案:通常存我们自己创建的 MySQL 库(本地 或 远程)
Hive 和 MySQL 之间通过 MetaStore 服务交互
执行流程:
HiveQL 通过命令行或者客户端提交,经过 Compiler 编译器,运用 MetaStore 中的元数 据进行类型检测和语法分析,生成一个逻辑方案(Logical Plan),然后通过的优化处理,产生 一个 MapReduce 任务。
Hive的数据组织
Hive 的存储结构包括数据库、表、视图、分区和表数据等。数据库,表,分区等等都对 应 HDFS 上的一个目录。表数据对应 HDFS 对应目录下的文件。
Hive 中所有的数据都存储在 HDFS 中,没有专门的数据存储格式,因为 Hive 是读模式 (Schema On Read),可支持 TextFile,SequenceFile,RCFile 或者自定义格式等
只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据
Hive 的默认列分隔符:控制符 Ctrl + A,\x01
Hive 的默认行分隔符:换行符 \n
Hive 中包含以下数据模型:
database:在 HDFS 中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
table:在 HDFS 中表现所属 database 目录下一个文件夹
external table:与 table 类似,不过其数据存放位置可以指定任意 HDFS 目录路径
artition:在 HDFS 中表现为 table 目录下的子目录
bucket:在 HDFS 中表现为同一个表目录或者分区目录下根据某个字段的值进行 hash 散 列之后的多个文件
view:与传统数据库类似,只读,基于基本表创建
Hive 的元数据存储在 RDBMS 中,除元数据外的其它所有数据都基于 HDFS 存储。默认情 况下,Hive 元数据保存在内嵌的 Derby 数据库中,只能允许一个会话连接,只适合简单的 测试。实际生产环境中不适用,为了支持多用户会话,则需要一个独立的元数据库,使用 MySQL 作为元数据库,Hive 内部对 MySQL 提供了很好的支持。
Hive 中的表分为内部表、外部表、分区表和 Bucket 表
内部表和外部表的区别:
删除内部表,删除表元数据和数据
删除外部表,删除元数据,不删除数据
内部表和外部表的使用选择:
大多数情况,他们的区别不明显,如果数据的所有处理都在 Hive 中进行,那么倾向于 选择内部表,但是如果 Hive 和其他工具要针对相同的数据集进行处理,外部表更合适。
使用外部表访问存储在 HDFS 上的初始数据,然后通过 Hive 转换数据并存到内部表中
使用外部表的场景是针对一个数据集有多个不同的 Schema
通过外部表和内部表的区别和使用选择的对比可以看出来,hive 其实仅仅只是对存储在 HDFS 上的数据提供了一种新的抽象。而不是管理存储在 HDFS 上的数据。所以不管创建内部 表还是外部表,都可以对 hive 表的数据存储目录中的数据进行增删操作。
分区表和分桶表的区别:
Hive 数据表可以根据某些字段进行分区操作,细化数据管理,可以让部分查询更快。同 时表和分区也可以进一步被划分为 Buckets,分桶表的原理和 MapReduce 编程中的 HashPartitioner 的原理类似。
分区和分桶都是细化数据管理,但是分区表是手动添加区分,由于 Hive 是读模式,所 以对添加进分区的数据不做模式校验,分桶表中的数据是按照某些分桶字段进行 hash 散列 形成的多个文件,所以数据的准确性也高很多